• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Sensor Tips

Sensor Product News, Tips, and learning resources for the Design Engineering Professional.

  • Motion Sensing
  • Vision systems
    • Smart cameras
    • Vision software
    • Lighting
    • Optics
  • Pressure
  • Speed
  • Temperature
  • Suppliers
  • Video
    • EE Videos
    • Teardown Videos
  • EE Learning Center
    • Design Guides
    • Tech Toolboxes

FAQ on optical proximity sensing: part 1

January 22, 2025 By Bill Schweber

A light source and photosensor combine for effective, reliable, non-contact proximity detection of nearby objects.

Non-contact proximity sensors detect the presence or absence of nearby objects (including animals and people) using basic physics phenomena such as capacitive and inductive electromagnetic fields, light, or sound. Many techniques are used for this sensing, each offering different operational attributes in specific applications and environments.

This proximity sensing is a ubiquitous yet often invisible function in our society. Automation is impossible in a modern manufacturing process without sensors, but it goes far beyond that. The sensing requirement may be for a random event, such as a person entering/leaving a room (legitimate or an intruder) or to indicate to an elevator controller that someone is in the path of a door closing. Alternatively, it is needed for a more deterministic and predictable role, such as checking for products moving along a high-speed production line, as seen in Figure 1.

proximity detection
Figure 1. Sensors must be sited close to their target, be rugged and reliable, and use minimal wiring, especially in industrial environments. (Image: Dynamic Measurement & Control Solutions LLC)

In a basic arrangement, these sensors are almost always housed in a relatively compact enclosure and mounted using a simple yet rugged bracket. The associated cable is also rugged, usually with just three wires for power, ground, and output signal; sometimes, a fourth wire is used for signal ground.

Keep in mind that proximity sensing is a non-contact arrangement. Other sensing techniques, such as using a switch, rely on physical contact, and these have their role in some situations. However, in most industrial, commercial, and even residential applications, requiring such physical contact would be unsuitable, awkward, unreliable, or have other drawbacks.

Unsurprisingly, no proximity-sensing technology best fits all target types, sizes, distances, operating environments, and installation specifics. As a result, many different technologies incorporating various physics phenomena are used for non-contact proximity sensing,

The most common proximity sensing technology is also the oldest. Called optical sensing, the concept is simple enough: visible or infrared (IR) light is projected at the target and then is reflected by the target or, in the absence of the target, passes through the target zone. Optical proximity sensing is also often called “photoelectric sensing.” Compared to the many other non-contact presence/absence proximity-sensing technologies in use that are based on different physics principles, optical is the most intuitive as it involves just interruption and reflection of a beam of light.

This FAQ looks at the basics of photoelectric sensing, its variations, and its enhancements. While this form of proximity sensing is fairly straightforward in principle, as with all technologies, its subtleties affect effective use and installation.

Q: What is the basic principle of optical proximity sensing (photoelectric sensing)?
A: It’s extremely simple, direct, and intuitive — among its many virtues. It starts with a beam of light directed towards the target area of interest. Depending on the installation arrangement, a light sensor then looks for a reflection from the target; alternatively, if the senior is on the opposite side of the light source, the sensor looks for the presence or absence of light passing through the target area.

Q: Sounds simple enough, so what are some complicating factors?
A: Many factors affect installation and performance, including target distance (a few inches to several feet or more), target size, target optical characteristics (reflective, diffuse, or transparent) and color, target position, consistency, and orientation, operating atmosphere (clean to dusty), and available space.

Q: What are the three basic arrangements for optical proximity sensing? What are their key attributes?
A: There are three types; through-beam, retroreflective, and diffused. A combination of the above considerations and other factors determines the right choice in a given application setting.

Q: What is “through-beam?”
A: This is the most direct and obvious approach, with separate transmitter and receiver nodes on either side of the target zone, shown in Figure 2. The transmitter light source and receiver photosensor must be pointing directly at each other, with the target zone between them.

proximity detection
Figure 2. In the simple arrangement of through-beam sensing, the target object blocks the emitted light beam from reaching a far-end sensor. (Image: OMRON Corporation)

Q: What are the attributes of this simple and obvious arrangement?
A: The through-beam scheme offers a relatively longer range, reliability (meaning consistent performance), and higher accuracy. Since the light only travels in one direction, it is well suited to situations with wide door openings, such as garage doors. However, the cost is higher due to the need for two components, including their housing and wiring; challenges in detection through thin, clear objects due to light refraction; setup and alignment of two separated units; and issues with mounting-space requirements and cable management.

Q: How does retroreflective arrangement work?
A: In the retroreflective arrangement, as shown in Figure 3, the sensing system contains both the transmitter and receiver in the same housing. The light source projects the beam to the target, and beyond the target is a retroreflector, which is aligned to reflect the beam back into the photo-sensing receiver in that housing.

proximity detection
Figure 3. The beam is reflected from a passive far-end retroreflector if the object is absent for retroreflective sensing. (Image: OMRON Corporation)

When the target object is absent, the beam is reflected back to the sensor; when it is present, some or all of the beam is blocked, and only a small part (if any) gets back to the sensor.

Note that a retroreflector is not a simple mirror. It would reflect impinging light at an angle and, therefore, away from the source unless they were in perfect alignment; basic physics states that the angle of incidence equals the angle of reflection. Instead, the retroreflector is a relatively flat but three-dimensional, inexpensive passive component with a surface pattern of tiny “inside cubes” that reflect light back to the source regardless of the angle of incidence. Rugged versions were placed on the moon by astronauts and then used to measure the distance from Earth to the moon via round-trip laser-beam transit time.

Q: Retroreflective seems simpler to set up and is less costly than through-beam. What are the actual pros and cons?
A: Certainly, the hardware cost is lower, and setup is easier, as there is only one electromechanical module and less cabling, so proving power and doing alignment is easier (the far-end reflector is relatively easy to install and align). However, the maximum sensing distance is shorter as it depends on the amount of light related back to the sensor from the retroreflector. Keep in mind that only a small amount of reflected light is available even under the best circumstances, and it is a point-like source that spreads with the returned intensity decreasing in proportion to the square of the distance.

Shiny or reflective objects like mirrors, cans, and plastic-wrapped juice boxes create a challenge for retro-reflective photoelectric sensors. These targets sometimes reflect enough light to trick the receiver into thinking the beam was not interrupted, causing erroneous outputs. Applications for retroreflective include baggage conveyors at airports, vehicle detection at toll gates, and some material-handling applications. Due to its simplicity in setup, the retroreflective mode is more widely used than the more obvious through-beam scheme.

Q: What is the diffused approach?
A: The diffused approach (also called the diffuse-reflective or simply reflective approach) is direct and intuitive but has operational issues. As with the retroreflective arrangement, the sensor unit contains both a transmitter and a receiver. However, instead of needing a discrete reflector to return the beam to the receiver, the sensor is directed at the target object itself, which must reflect some light back to the receiver, as shown in Figure 4.

proximity detection
Figure 4. In diffuse sensing, the object reflects some of the incident light but at multiple random angles and intensities, and the sensor must see these reflections. (Image: OMRON Corporation)

Q: The diffused approach seems simple enough: just aim and look for the reflected light. What are real-world considerations?
A: A diffused photoelectric sensor is the cheapest as only one point of installation is required, and no far-end sensor or retroreflector is needed. Rather than relying on a reflector to bounce back the beam, the sensor relies on the backscattering of target objects passing in front of the beam to reflect some light back. However, the detection distance is much shorter since only a very small fraction of the incident light is reflected back to the sensor. As a result, the sensor may have difficulties detecting the object depending on its material, reflectivity, orientation, color, and flatness.

Part 2 of this article goes beyond the principles and looks at some physical implementations of the sensing system, input/output specifics, and other considerations.

References

W10 Photoelectric proximity sensor, SICK GmbH
Exploring the Different Types of Proximity Sensors: Object Detection, Dynamic Measurement and Control Solutions LLC
Photoelectric Sensors, Omron Corp.
Fundamentals of Photoelectric Sensors, Automation.com
Sinking and Sourcing PLC Inputs | What is the Difference?, RealPars B.V.
Sinking and Sourcing: Which Connection Is Best for Your PLC?, RealPars B.V.
Photoelectric Sensor Explained (with Practical Examples), RealPars B.V.
Proximity Sensor Types & Applications: The Ultimate Guide, GEYA Electrical Equipment Supply
Proximity sensors compared: Inductive, capacitive, photoelectric, and ultrasonic, Machine Design
Photoelectric Sensors Theory of Operation, Softnoze
Industrial sensing fundamentals – NPN vs PNP, Balluff Inc.

Related EE World content

IP67-rated USB type-A cable assemblies designed for IoT applications
What are submersible sensors?
Analyzing different proximity sensor technologies
Light Sensor Optimizes In Proximity
What is Single-Pair Ethernet and PoDL?
What is an open drain?

You may also like:


  • What’s new in sensors for smart homes: part 1

  • What really counts?

  • How do micro photo sensors work and what are they…

  • How do sensors improve home appliances? Part 1

  • What’s new in color sensing?

Filed Under: Featured, Frequently Asked Question (FAQ), Photoelectric, Proximity, Security Tagged With: FAQ

Primary Sidebar

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

Sensors in American football can help the game

Select and integrate sensors into IoT devices

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“sensor
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

RSS Current EDABoard.com discussions

  • How to simulate a microstrip gap with such a reference plane
  • UART Basic Before Writing Code
  • Analog (op amp circuit in cadence)
  • reverse polarity circuit protection between to power sources
  • How to know if PIC works correctly or NOT ?!

RSS Current Electro-Tech-Online.com Discussions

  • Epson crystal oscillators
  • Fun with AI and swordfish basic
  • Simple LED Analog Clock Idea
  • Microinverters and storeage batteries?
  • PIC KIT 3 not able to program dsPIC

EE ENGINEERING TRAINING DAYS

engineering
“bills

RSS Featured White Papers

  • 4D Imaging Radar: Sensor Supremacy For Sustained L2+ Vehicle Enablement
  • Amphenol RF solutions enable the RF & video signal chains in industrial robots
  • Implementing Position Sensors for Hazardous Areas & Safety

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Footer

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Test and Measurement Tips

SENSOR TIPS

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy