• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Sensor Tips

Sensor Product News, Tips, and learning resources for the Design Engineering Professional.

  • Motion Sensing
  • Vision systems
    • Smart cameras
    • Vision software
    • Lighting
    • Optics
  • Pressure
  • Speed
  • Temperature
  • Suppliers
  • Video
    • EE Videos
    • Teardown Videos
  • EE Learning Center
    • Design Guides
    • Tech Toolboxes

What’s new in glucose sensing?

October 24, 2022 By Randy Frank

Key driving forces for new or next generation products include (1) critical need, (2) broad, global usage and (3) sufficient volume requirements to justify R&D expenditures. Glucose sensing/monitoring meets these criteria and more. In the United States alone, the American Diabetes Association (ADA) says over 133 million Americans have diabetes or prediabetes [1]. According to the US Centers for Disease Control and Prevention, more than 37 million US adults have diabetes and 1 in 5 do not know they have it [2]. From a critical need standpoint, diabetes is the seventh leading cause of death in the United States and the No. 1 cause of kidney failure, lower-limb amputations and adult blindness.

Globally, the World Health Organization (WHO) notes that the number of people with diabetes is increasing rapidly based on cases rising from 108 million in 1980 to 422 million in 2014 [3].

Historically, self-monitoring of blood glucose (SMBG) involved enzyme-coated test strips manufactured with a precise amount of specific enzymes that reacted to a single blood sample [4]. Since, diabetic patients must do this at least three times a day and 7 days a week, the need for an updated approach to biosensing was solved in the 1990s with continuous glucose monitors (CGMs).

Instead of a test strip, a CGM uses a filament coated in glucose sensing enzymes to detect glucose in the (interstitial) fluid between the user’s cells. As a wearable sensor, a CGM automatically detects and measures glucose levels 24 hours a day but still requires insertion into the test site [4]. Typical sensor mounting locations include the stomach, hip and upper arm. Another limitation is a limited time before requiring sensor replacement – from as little as several days to a few weeks

The global CGM devices market is valued at USD 5.13 billion in 2021 and is projected to reach USD 13.24 billion by 2028 with a compound annual growth rate (CAGR) of 10.8% during the forecast period of 2022–2028 [5]. Dexcom’s G6 and Abbott Laboratories’ FreeStyle Libre are two CGMs that have been certified for usage in hospitals.

CGM systems typically consist of three components: (1) a glucose oxidase (GOD)-based glucose sensor and (2) a transmitter attached to the sensor to transfer the data to (3) a receiver/smartphone for displaying the results [6]. Image Source: De Gruyter.

The ultimate glucose sensor for glucose-level monitoring would be a noninvasive technique that could be miniaturized and connected to a mobile device such as a smartphone. In pursuit of this goal, a variety of optical methods have been investigated for non-invasive blood glucose detection [7]. These include:

  • Infrared Spectroscopy using both the absorption and scattering phenomenon of light
  • Raman Spectroscopy using the scattering phenomenon of the light
  • Fluorescent Spectroscopy using the fluorescence produced from the sample tissue
  • Thermal Spectroscopy using the emission of infrared light as compared to the glucose absorption
  • Optical Coherence Tomography (OCT) using super luminescent light
  • Ocular Spectroscopy using specially designed hydrogel-based eye contact lenses that change color depending up on the glucose concentrations

Researchers could be getting very close to having a manufacturable product. For example, Quantum Operation uses core technologies that include the novel spectrometer materials, one designed to emit an optimal spectrum with LED illumination and another highly responsive material to target spectra. In addition, proprietary firmware efficiently extracts targeted data by canceling noise to achieve noninvasive 24/7 glucose monitoring [8]. The company’s Noninvasive Glucometer Wristband technology was demonstrated at CES 2022.

Using laser-based analysis instead of LEDs, Rockley Photonics is also working toward noninvasive 24/7 monitoring [9]. Using a Spectrophotometer-on-a-Chip approach, itsVitalSpex sensor modules generate a large number of discrete laser outputs from a single silicon chip covering a broad optical band. The company’s biomarker sensing capabilities are in various stages of development with the VitalSpex Pro Module having the highest capabilities. Incorporating an advanced suite of sensors, the VitalSpex Pro enables the measurement of several biomarkers that are helpful for monitoring more complex health conditions including a glucose indicator as well as blood alcohol content (BAC) and blood lactate (BL).

References

[1] Leading Diabetes Organizations Publish Joint Consensus Report on Benefits, Challenges, and Recommendations for Automated Insulin Delivery | ADA

[2] What is diabetes? | CDC

[3] Diabetes (who.int)

[4] How Does a Glucose Sensor Work? (agamatrix.com)

[5] Continuous Glucose Monitoring Devices Market Size, Growth Analysis Report | 2028 (vantagemarketresearch.com)

[6] Basics and use of continuous glucose monitoring (CGM) in diabetes therapy (degruyter.com)

[7] https://www.semanticscholar.org/paper/Blood-Glucose-Monitoring-Using-Non-Invasive-Optical-Srivastava-Chowdhury/318b55d593ab3ff18ac7c00f3d6eef3b7e07483e

[8] Wristband tracks before & after-meal glucose level changes | Quantum Operation Inc. (quantum-op.co.jp)

[9] VitalSpex™ Biosensing Platform | Rockley Photonics

Filed Under: Biosensor, Featured, Frequently Asked Question (FAQ), spectroscopy Tagged With: rockley photonics

Primary Sidebar

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

Sensors in American football can help the game

Select and integrate sensors into IoT devices

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“sensor
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

RSS Current EDABoard.com discussions

  • Innovus Scan Reorder deletes Scan In Pad
  • LLC resonant converter clarification
  • The Analog Gods Hate Me
  • Pre amp and other circuits
  • What tool can I use to draw circuit diagrams like this?

RSS Current Electro-Tech-Online.com Discussions

  • Home Smoke detectors are all Beeping Batteries are not dead.???
  • How to make string LEDs?
  • My Advanced Realistic Humanoid Robots Project
  • PIC KIT 3 not able to program dsPIC
  • Display TFT ST7789 (OshonSoft Basic).

EE ENGINEERING TRAINING DAYS

engineering
“bills

RSS Featured White Papers

  • 4D Imaging Radar: Sensor Supremacy For Sustained L2+ Vehicle Enablement
  • Amphenol RF solutions enable the RF & video signal chains in industrial robots
  • Implementing Position Sensors for Hazardous Areas & Safety

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Footer

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Test and Measurement Tips

SENSOR TIPS

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy