• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Sensor Tips

Sensor Product News, Tips, and learning resources for the Design Engineering Professional.

  • Motion Sensing
  • Vision systems
    • Smart cameras
    • Vision software
    • Lighting
    • Optics
  • Pressure
  • Speed
  • Temperature
  • Suppliers
  • Video
    • EE Videos
    • Teardown Videos
  • EE Learning Center
    • Design Guides
    • Tech Toolboxes

What are quantum sensors?

May 9, 2023 By Randy Frank

Quantum sensors measure minute changes in electric and magnetic fields as well as motion and the measurements are made at the atomic level. At this scale, information from individual atoms instead of from huge collections of atoms allows quantum sensors to make exponentially more accurate, more thorough, more efficient, and more productive measurements. Using the smallest amounts of energy and matter, quantum sensors can detect and measure the smallest changes in time, gravity, temperature, pressure, rotation, acceleration, and frequency as well as magnetic and electric fields.

Unlike quantum computing which has been discussed for years but is not available for public use, quantum sensing has been available for several decades in products such as magnetic resonance imaging (MRI) machines. Similarly, microwave atomic clocks and superconducting quantum interference devices (SQUIDs), have used quantum sensors for decades as well. The next generation of quantum sensing is just emerging. It includes gravity sensors, nitrogen-vacancy (NV) sensors, and other innovations. Next-generation applications fall into at least eight categories and differ regarding maturity levels and market potential.

Applications for quantum sensors. (Image: McKinsey)

Applications, where an alternative technology does not exist, will receive the most competitive efforts. However, quantum sensors that can provide higher sensitivity than current sensors at a price that is comparable to or less than the existing approach will also be commercially attractive. Technologies used for the next generation of quantum sensing include neutral atoms, trapped ions, photonics, spin qubits, superconducting circuits, and elementary particles.

In the research environment, quantum sensors can measure the magnetic fields produced by the brain to diagnose neurological disorders. Types of quantum sensors and their potential applications in medicine and more include:

Thermometers that measure temperature with high precision and accuracy by using atoms or ions can find applications in areas such as materials science, medical diagnostics, and food safety.

Chemical sensors that detect various chemicals with high sensitivity and specificity can be used in environmental monitoring, medical diagnostics, and food safety.

Imaging sensors that use the properties of photons or atoms to create high-resolution images of objects or materials can find applications for medical imaging, materials science, and surveillance.

Atomic clocks that use the highly stable and predictable oscillations of atoms in materials such as cesium or rubidium atoms to measure time with extreme accuracy are being applied to GPS navigation and scientific research.

Magnetometers that use the properties of atoms or ions to measure magnetic fields can find applications in geology, medical diagnostics, and materials science.

Gravitometers that measure gravitational fields can be used for geophysics and navigation purposes.

Interferometers that use the interference patterns of photons to measure length or distance can be useful for metrology, microscopy, and precision engineering.

In medicine, quantum sensors are being used to develop new diagnostic tools for a variety of medical applications and in biomedical research for:

  • Recording brain activity with wearable sensor helmets
  • Neuronal circuits and rapid clinical testing with magnetometry of single neurons
  • Cell development and endogenous heat generation
  • Metabolomics studies

(Image: Cerca Magnetics Limited)

For example, an optically pumped magnetometer (OPM)-based magnetoencephalography (MEG) can detect vector magnetic fields and unlike SQUIDs currently used in MEGs, they do not require cryogenic operation. Ongoing miniaturization efforts for OPMs have enabled prototype OPM-MEGs to be built and are paving the way toward real-world applications.

 

References

https://www.baesystems.com/en-us/definition/what-is-quantum-sensing#:~:text=is%20Quantum%20Sensing%3F-,What%20is%20Quantum%20Sensing%3F,collected%20at%20the%20atomic%20level.
https://www.defenseone.com/ideas/2022/06/quantum-sensorsunlike-quantum-computersare-already-here/368634/
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/shaping-the-long-race-in-quantum-communication-and-quantum-sensing
https://research.aimultiple.com/quantum-sensors/
https://www.nature.com/articles/s42254-023-00558-3
https://www.cercamagnetics.com/cerca-opm-meg

You may also like:


  • How do brain-computer interfaces use sensors?

Filed Under: Featured, Frequently Asked Question (FAQ) Tagged With: cerca magnetics limited, FAQ

Primary Sidebar

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

Sensors in American football can help the game

Select and integrate sensors into IoT devices

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“sensor
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

RSS Current EDABoard.com discussions

  • How to simulate a microstrip gap with such a reference plane
  • UART Basic Before Writing Code
  • Analog (op amp circuit in cadence)
  • reverse polarity circuit protection between to power sources
  • How to know if PIC works correctly or NOT ?!

RSS Current Electro-Tech-Online.com Discussions

  • Epson crystal oscillators
  • Fun with AI and swordfish basic
  • Simple LED Analog Clock Idea
  • Microinverters and storeage batteries?
  • PIC KIT 3 not able to program dsPIC

EE ENGINEERING TRAINING DAYS

engineering
“bills

RSS Featured White Papers

  • 4D Imaging Radar: Sensor Supremacy For Sustained L2+ Vehicle Enablement
  • Amphenol RF solutions enable the RF & video signal chains in industrial robots
  • Implementing Position Sensors for Hazardous Areas & Safety

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Footer

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Test and Measurement Tips

SENSOR TIPS

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy